

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

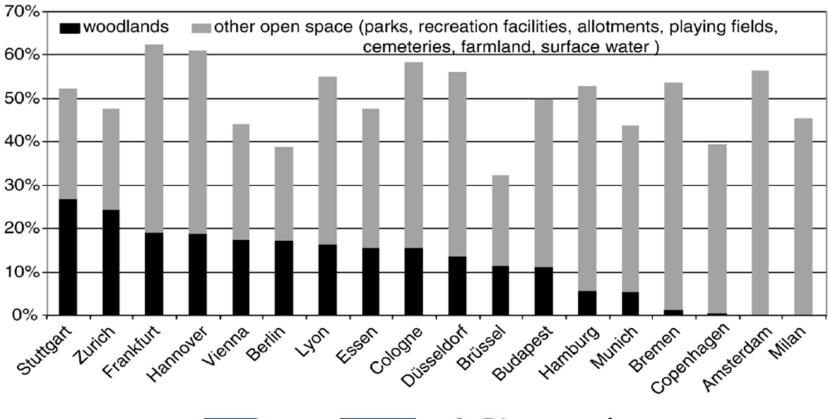
Urban forestry and air pollutants

Carlo Calfapietra

Tato akce se koná v rámci projektu:

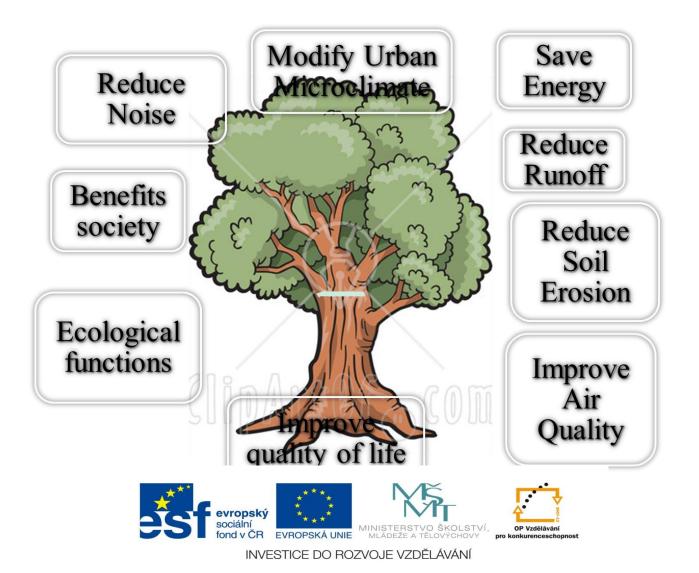
Vybudování vědeckého týmu environmentální metabolomiky a ekofyziologie a jeho zapojení do mezinárodních sítí (ENVIMET; r.č. **CZ.1.07/2.3.00/20.0246**) realizovaného v rámci Operačního programu Vzdělávání pro konkurenceschopnost.

Urban (and peri-urban) forestry

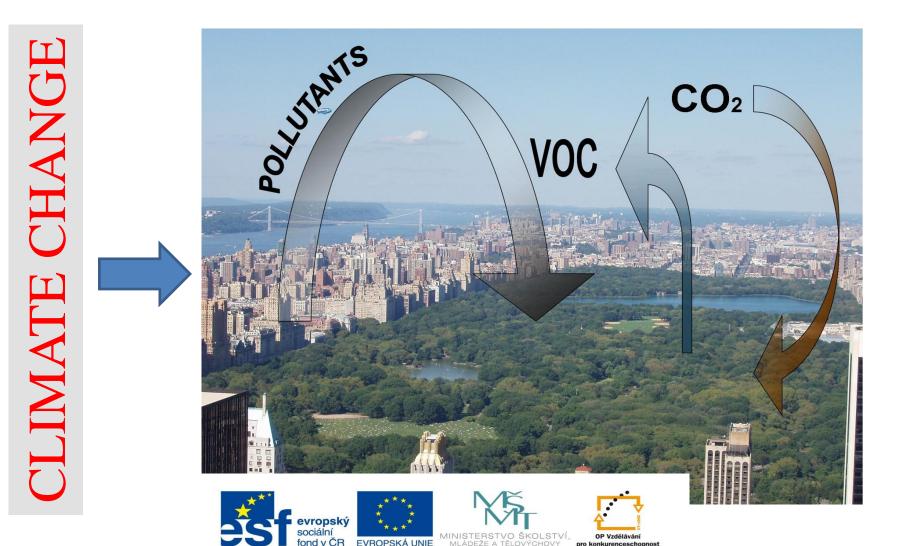

- Trees in streets, squares, parking areas and
- other "grey spaces" with sealed surfaces.

- Trees in parks and other green spaces such
- as yards, gardens, and commercial areas.

- Stands of trees that are often referred to as
- "woodlands" or "woods".



Urban green in Europe



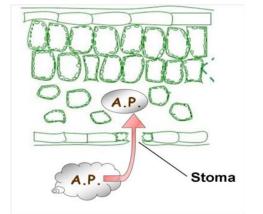
Benefits of urban forestry

Risks of urban forestry

Interactions of urban forests with atmospheric pollutants: Evidences from laboratory, field and modeling

Introduction

- Acute exposure: high concentration for short periods
- Chronic exposure: low concentrations for long periods
- The factor which takes into account both concentration and lenght of exposure is the "dose"
- Absorbed dose: amount of pollutant uptake by a plant (g m-2)
- Effective dose: amount of pollutant which reaches the protoplast and creates injuries (g m-2)



Trees: ACTIVE and PASSIVE AIR FILTERS

Atmospheric **Pollutants** *Mitigation*:

- *Stomatal uptake* (NOx; SO₂; O₃; CO)
- Capture dry deposition (PM)

WHO - Tree: **Quercus ilex** (holm oak)

- Representative tree in Mediterranean/ European UF
- Small leaves/stems structure
- Evergreen

Pollutant: *Particulate Matter* (PM 10; 2.5)

- Diffused Airborne particles dimension lower than 10 μm and 2.5 μm

Highly diffused Dangerous

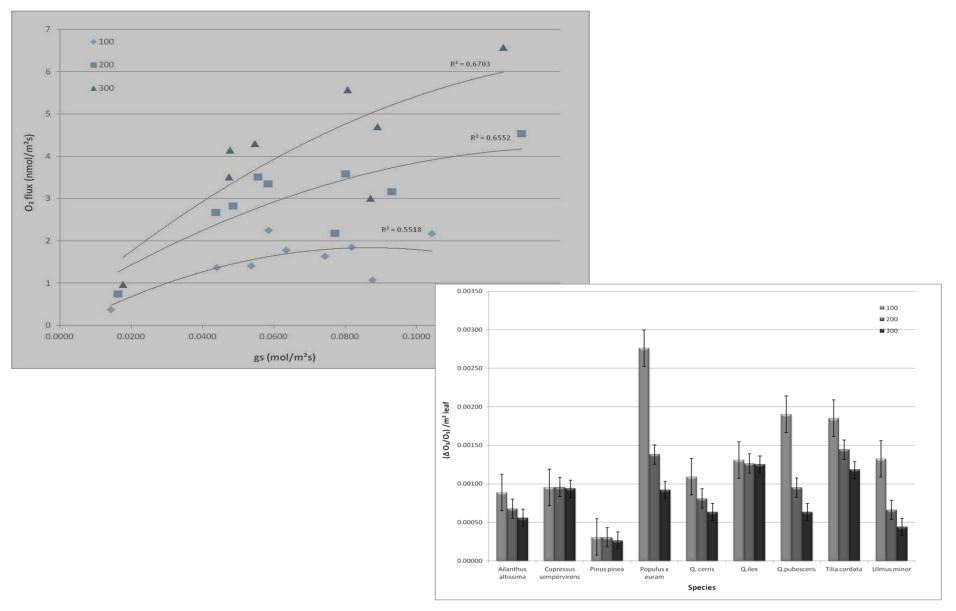
CNR IBAI

Experimental designs; data flow

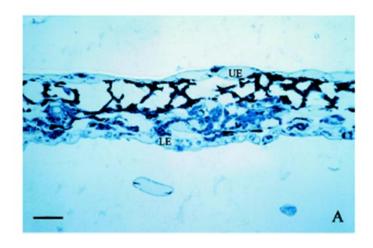
Big cuvette measurements of leaf gas exchange

Application and validation of models

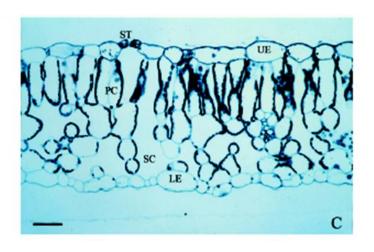
campaign using eddy covariance technique


Laboratory

GIS+Modelling


Field

O₃: Laboratory cuvette results



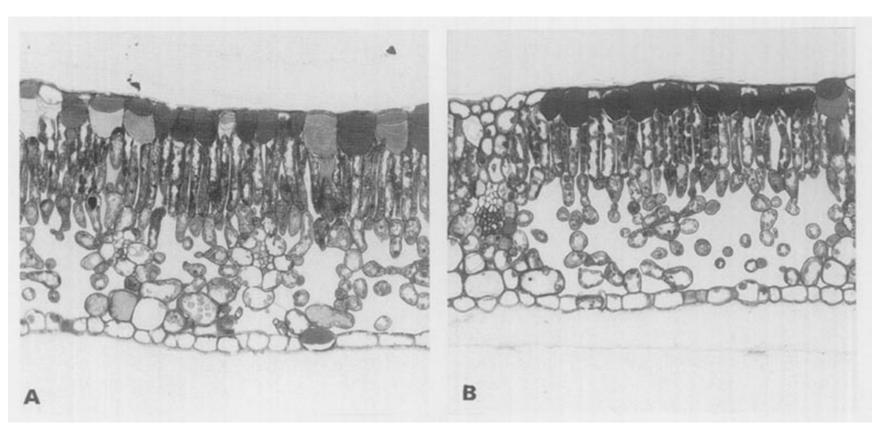
O₃: Anatomical changes

Tobacco leaves

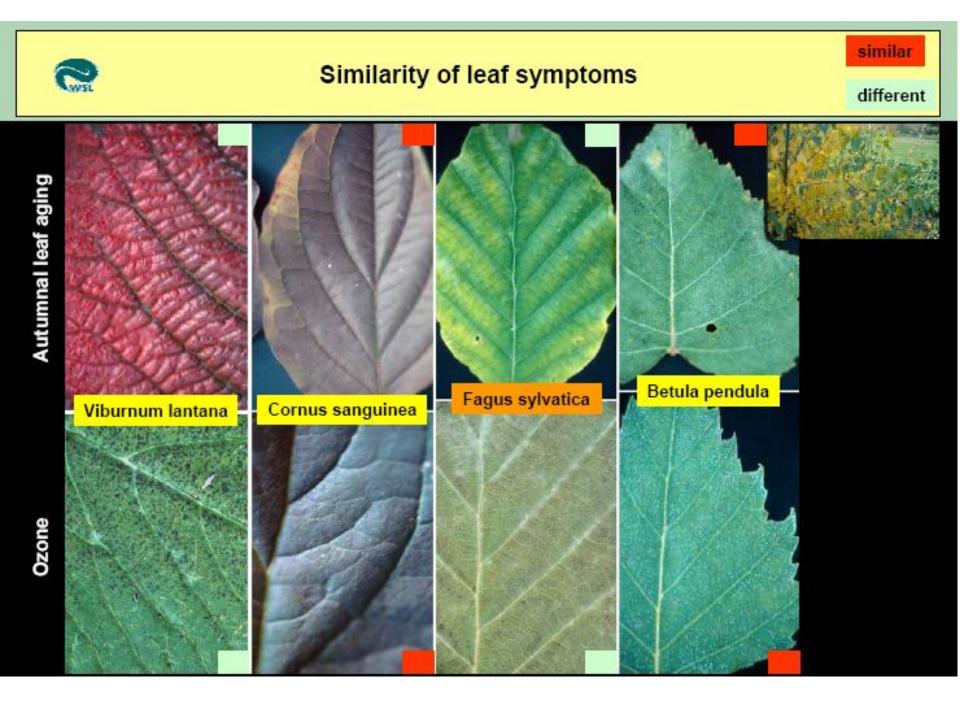
300 ppb ozone

control

Loreto et al. (2001)


O₃: Anatomical changes – B. pendula

control leaves


O3 fumigated leaves

DP Vzdělává

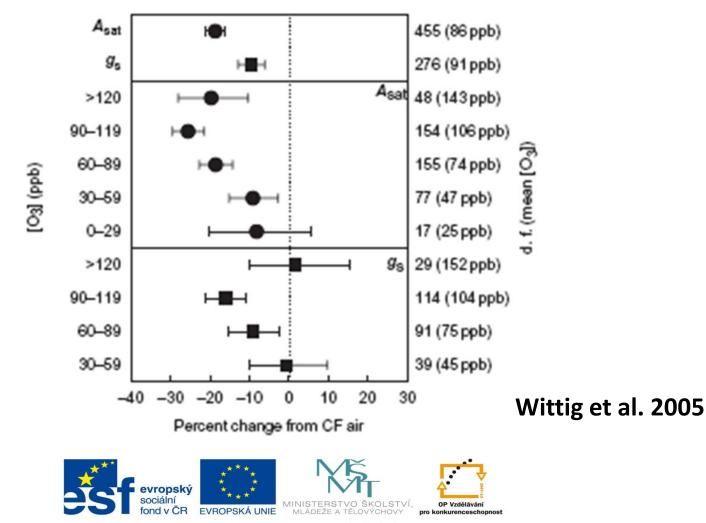
nkurenceschonnos

Comparison between senescence and ozone symptoms

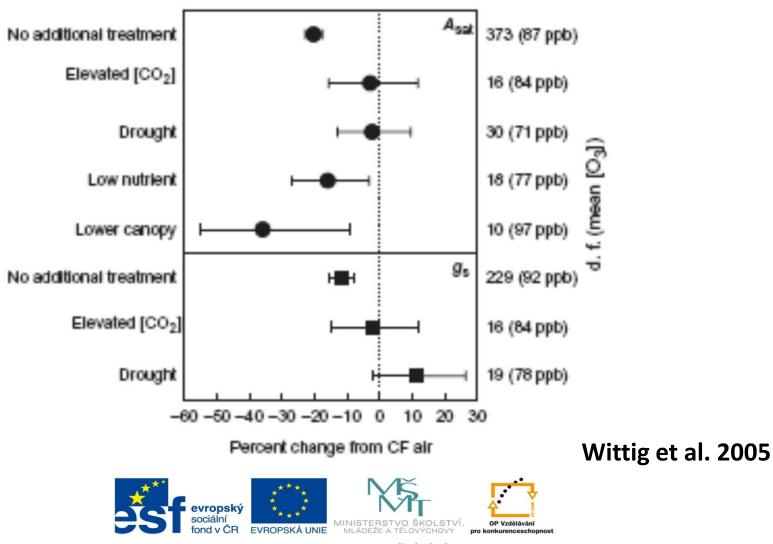
different

similar

O₃ effect: leaf/plant level


(Felzer et al. 2007)

Variable	O ₃ Effect	Examples of primary source	Frequently cited Synthesis Article
Visible injury	Î	[12]	[95]
Photosynthesis	Ī	[83]	[82]
Stomatal conductance	Ĩ.	[101]	[82]
Dark respiration	ñ	[101]	
Tree biomass	Ī	[36]	[80]
Crop yield	1	[65]	[30]
Root growth	л́.	[59,60]	
Decomposition	ň	[34]	
Nitrogen uptake	ñ	[98]	


White arrow: uncertainties Black arrow: agreement

O3 effect on photosynthesis (Asat) and stomata (gs)

Interactions of O₃ effects

O₃ effects: Whole tree level

O₃ effects: Canopy/ecosystem level

- Aspen-FACE experiment
- Rhinelander, WI, USA
- Established in 1998
- Treatments
- Control
- Elevated $CO_2 = 550 \text{ ppm}$
- Elevated $O_3 = 1.5 \text{ x}$ ambient O_3
- Elevated CO₂ + Elevated O₃
- Aspen Clones with different O₃ sensitivity

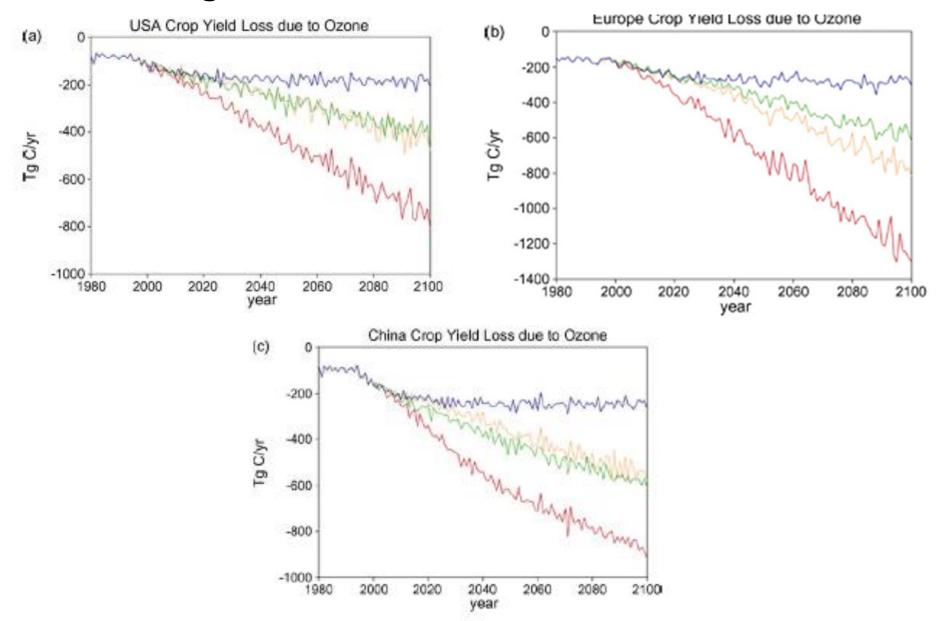
Selected results: Gas exchange

	CO2	03	CO2 + O3
Gas exchange			
A _{max} lower canopy	n.s.	$\downarrow\downarrow$	↑(young leaves) ↓(older leaves)
A _{max} whole canopy	<u></u> Υ	$\downarrow\downarrow$	n.s.
Carboxylation efficiency	n.s.	\downarrow	$\downarrow\downarrow$
Stomatal limitation	\downarrow	n.s.	Ļ
Stomatal conductance	\downarrow	$\downarrow\uparrow$	\downarrow
Foliar respiration	n.s.	Ť	n.s.
Soil respiration	ΤŤ	\downarrow	n.s.
Microbial respiration	ΤŤ	n.s.	n.s.
Stomatal density	n.s.	n.s.	n.s.
Chlorophyll content	Ļ	Ļ	Ļ
Chloroplast structure	Ť	\downarrow	\downarrow

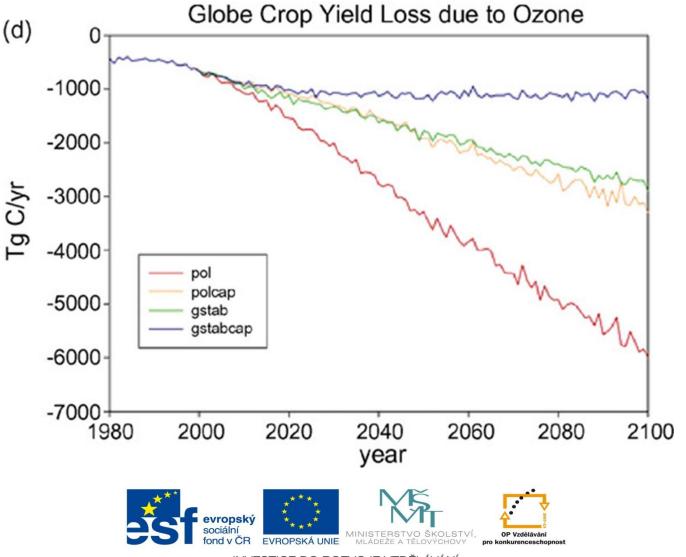
O, flux

Selected results: Growth parameters

	CO2	03	CO2 + O3
Growth and productivity			
Leaf thickness	↑ (n.s.	n.s.
Leaf size	↑ (\downarrow	\downarrow
Leaf area	Ŷ	\downarrow	n.s.
LAI	Ŷ	\downarrow	n.s.
Height growth	Ŷ	\downarrow	n.s.
Diameter growth	<u>↑</u>	\downarrow	n.s.
Volume growth		\downarrow	n.s.
Leaf biomass	↑ (\downarrow	n.s.
Stem biomass	<u>↑</u>	\downarrow	\downarrow
Coarse root biomass	↑ (\downarrow	n.s.
Fine root biomass	↑ (\downarrow	n.s.
Fine root turnover	↑ (n.s.	n.s.
Spring budbreak	n.s.	Delayed	n.s.
Autumn budset	Delayed	Early	n.s.
Foliar retention (autumn)	ΎΥ	$\downarrow\downarrow$	n.s.

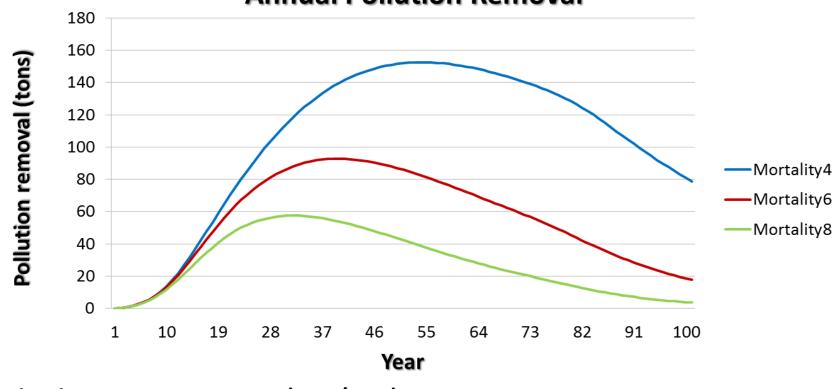


Selected results: Ecosystem interactions


T	CO2	03	CO2 + O3
Trophic interactions			
<i>Melampsora</i> leaf rust	n.s.	ŤŤ	ŤŤ
Aspen aphids	n.s.	n.s.	n.s.
Birch aphids	n.s.	n.s.	n.s.
Aspen Blotch Leafminer	\downarrow	\downarrow	\downarrow
Forest Tent Caterpillar	n.s.	1	n.s.
Oberea woodborer	Ŷ	n.s.	↑ (
Ecosystem level			
NPP	î (\downarrow	n.s.
Litter decomposition (k value)	\downarrow	n.s.	\downarrow
Nutrient mobilization	ΤŤ	n.s.	1
Water-use efficiency	↑	\downarrow	1
Soil moisture	î (↑ (1
Competitive indices	î (\downarrow	↓ ↓
Soil invertebrate diversity	n.s.	\downarrow	\downarrow
Microbial enzymes	1	n.s.	n.s.
Microbial biomass	Ť	n.s.	n.s.

O₃ effects: Biosphere level

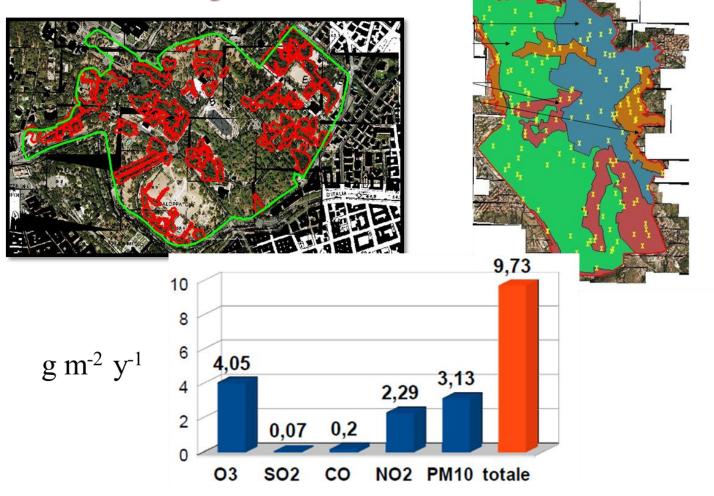
Prediction of global crop yield


Modelling: UFORE model

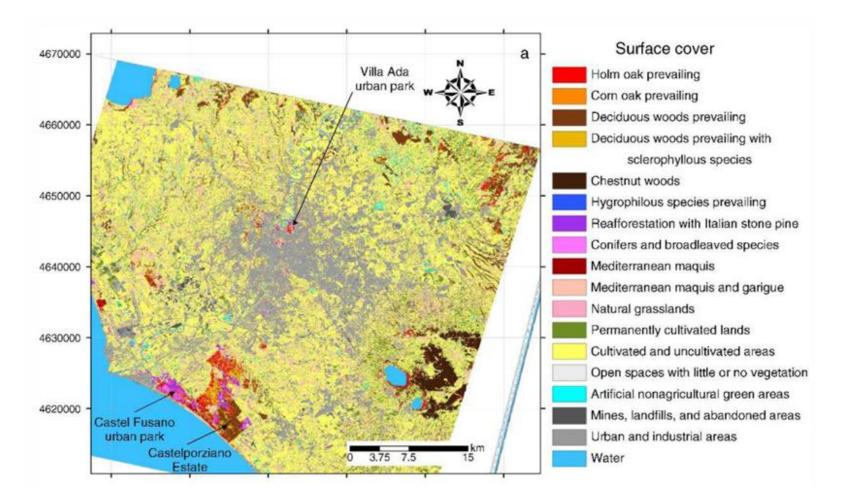
- Urban Forest Effects (UFORE) model
 - UFORE-A: Anatomy of the Urban Forest
 - UFORE-B: Biogenic Volatile Organic Compound (VOC) Emission
 - UFORE-C: Carbon Storage and Sequestration
 - UFORE-D: Dry Deposition of Air Pollution
 - UFORE-E: Energy Conservation

Application of UFORE model

Morani et al. 2011, Environmental Pollution

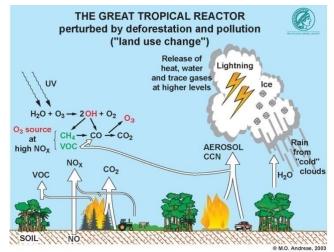

Annual Pollution Removal

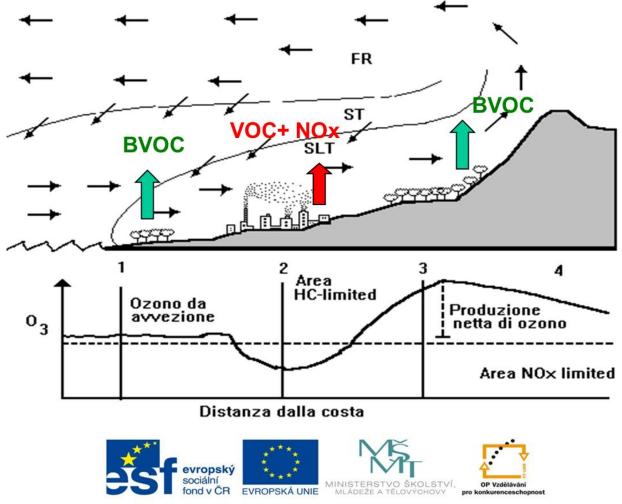
Peak values : 152.6, 92.8, 57.5 (tons/year)



Application of UFORE model: *Case studies*

Villa Borghese


Validation of model with eddy data


Interactions between O₃ and VOCs

- VOC and ozone formation
 - NO2+ sunlight -- > NO + O
 - 0 + 02 -- > 03
 - O3+ NO -- > NO2+ O2

- hydrocarbons (such as VOCs), through reactions with the radicals OH, induce an increase of NO2 to the detriment of NO, with consequent increase of ozone concentration
- OFP (Ozone Forming Potential)
 - $OFP_{species} = B[(E_{iso}R_{iso}) + (E_{mono}R_{mono})]$
 - B is the biomass factor [(g leaf dry weight m-² ground area)], Eiso and Emono are species-specific mass emission rates [(μg VOC) g⁻¹ leaf dry weight day⁻¹] for isoprene and monoterpenes Riso and Rmono are reactivity factors [g O₃ g⁻¹ VOC]
 - Benjamin & Winer, 1998

Mediterranean: "hot spot" for VOC and photochemical pollution

Are urban trees sink or source of O_3 ?

Table 3

Ozone removed and total VOC emitted in a year (g/tree) in two UFORE case studies in Italy: Milan (Porta Venezia gardens; Siena and Buffoni, 2007) and a tramway under construction in Florence (Line 1 and 3; Paoletti, unpublished).

Milan			Florence			
Species	O ₃ removal	VOC emission	Species	O ₃ removal	VOC emission	
Acer platanoides	45	86	Acacia dealbata	603	1103	
Aesculus hippocastanum	71	135	Acer campestre	26	354	
llex aquifolium	26	135	Acer negundo	137	442	
Magnolia sp.	60	179	Aesculus hippocastanum	257	372	
Taxus baccata	70	143	Ailanthus altissima	174	320	
Tilia sp.	84	83	Catalpa bignonioides	43	407	
Juercus robur	45	345	Cedrus atlantica	924	213	
			Cedrus deodara	644	173	
			Celtis australis	230	348	
			Cercis siliquastrum	0	62	
			Chamaecyparis lawsoniana	52	42	
			Crataegus sp.	44	279	
			Cupressus sempervirens	260	313	
			Fraxinus sp.	280	224	
			Laurus nobilis	296	249	
			Ligustrum lucidum	54	435	
			Liquidambar styraciflua	13	688	
			Magnolia sp.	85	318	
			Olea europaea	35	200	
Doolo	ti at al 9		Paulownia tomentosa	125	853	
Paoletti et al. 2009		1009	Pinus pinea	179	385	
			Platanus acerifolia	140	276	
			Populus alba	193	467	
			Populus nigra	353	327	
			Prunus armeniaca	14	698	
			Prunus cerasifera	52	311	
			Quercus ilex	112	341	
			Quercus rubra	65	312	
			Robinia pseudacacia	30	320	
			Tilia cordata	193	332	
			Ulmus sp.	216	307	

BVOC emission in urban environment

- We are now able to measure uptake of pollutants by plants in different ways and rather accurately especially for some pollutants
- Air pollutant uptake by urban trees can improve air quality in our cities but ...
 - BVOC emissions from the same trees can have important implications for O3 levels
- BVOC-O3 interactions are really complex both in the shortterm and in the long-term however it is generally highly recommended to avoid strong BVOC emitters especially around urban environments

Perspectives

- We are now able to clone the isoprene synthase gene from many species
- If the protective benefits are small and if the stimulating role on ozone uptake is small then it might be better to engineer those plants that do make isoprene to no longer make it and use these transgenic lines for tree plantations and around urban environments

Eddy Covariance PTR-TOF (VOC) Fast O₃ analyzer NOx analyzer Cond. Part. Counter

Project PON-Infrastruttura

Establishment of a high-technology urban site in Park of Capodimonte (Naples) for the study of the exchanges between the urban forestry and

Green Infrastructure approach: linking environmental with social aspects in studying and managing urban forests

(GreenInUrbs) Carlo Calfapietra, Chair

COST Action Objectives


- To collate recent (qualitative and quantitative) findings from national or international programmes about the ecosystem services provided by GI and UF.
- To compare different approaches and conditions (climatic, sociocultural, economic and urban planning) in the countries involved, in order to develop best practice guidelines for GI managers and decision makers to assist in the maximization of benefits from GI and UF.
- To define environmental and social indicators and thresholds in order to improve the environmental quality of our cities, and consequently the quality of life of European citizens.
- To provide scientific evidence in order to implement those best practice into legislation both at local, national and European level
- To identify the main priorities and challenges in terms of future research on GI and UF

www.greeninurbs.com

HOME ORGANIZATION NEWS INTERACTIVE TOOLS WGS ACTIVITIES LINKS CONTACT

