

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Global Ecology Unit CREAF-CSIC-CEAB SeRMN

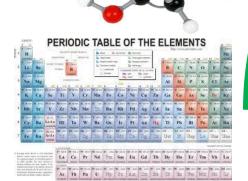
DROUGHT STRESS: APPLICATION OF METABOLOMIC APPROACH

Albert Gargallo Garriga

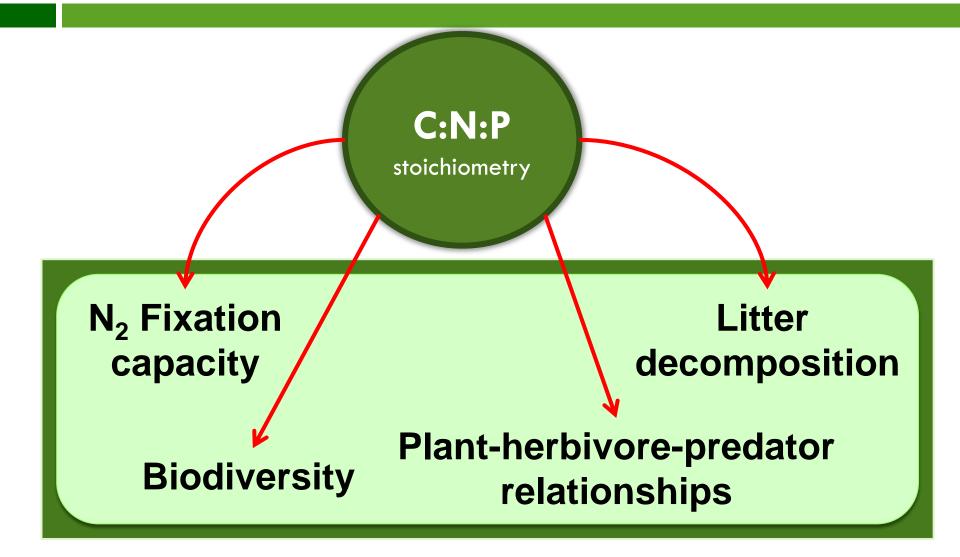
Tato akce se koná v rámci projektu: Vybudování vědeckého týmu environmentální metabolomiky a ekofyziologie a jeho zapojení do mezinárodních sítí (ENVIMET; r.č. **CZ.1.07/2.3.00/20.0246**) realizovaného v rámci Operačního programu Vzdělávání pro konkurenceschopnost.

Universitat Autònoma de Barcelona

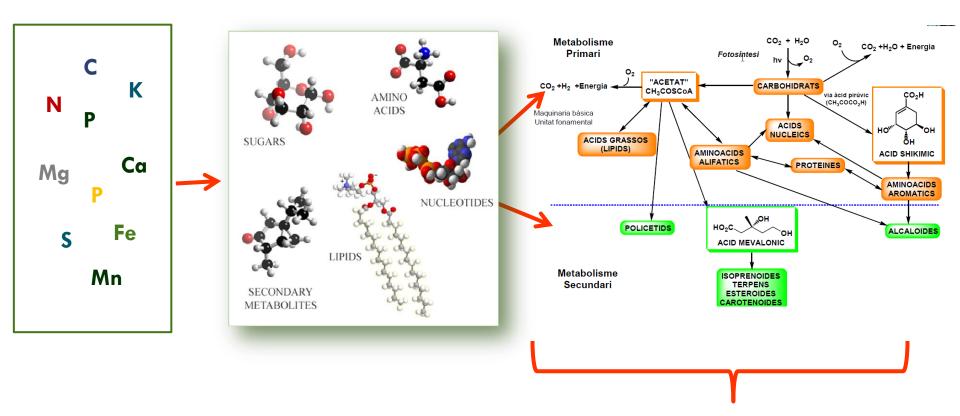
Brno, Czech Globe

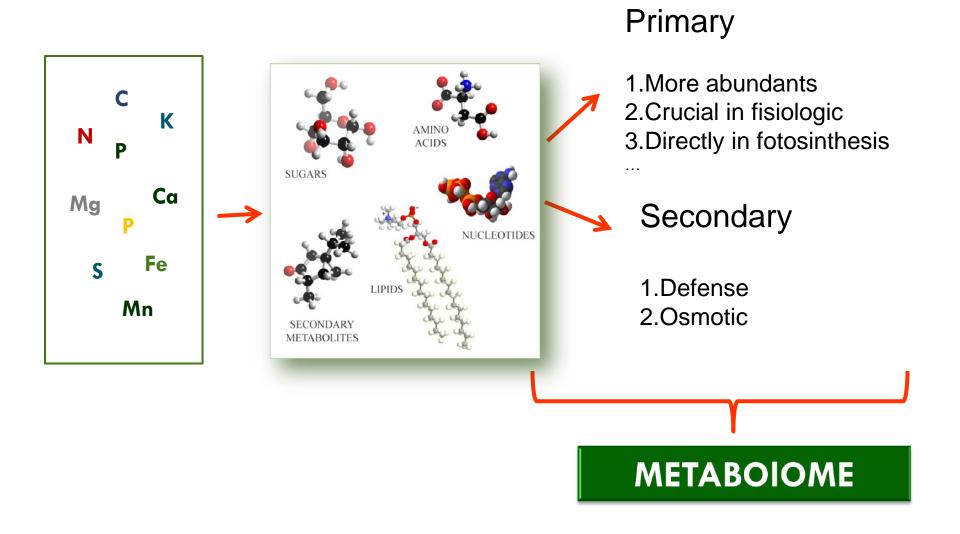

May 2014

Ecometabolomics


- Current cooperation and future challanges of cooperation between CREAF and CzechGlobe
- different methodological approaches
 NMR x HPLC-MSn
- comparative ecological and ecophysiological studies
 - climatic and geographical gradients

Introduction


From elements to global scale


The ecological Stoichiometry

Metabolomica

Metabonomica

Ecometabolomics

Plant-Herbivore interaction

Climate Change: Drought & Warming

Environmental Changes

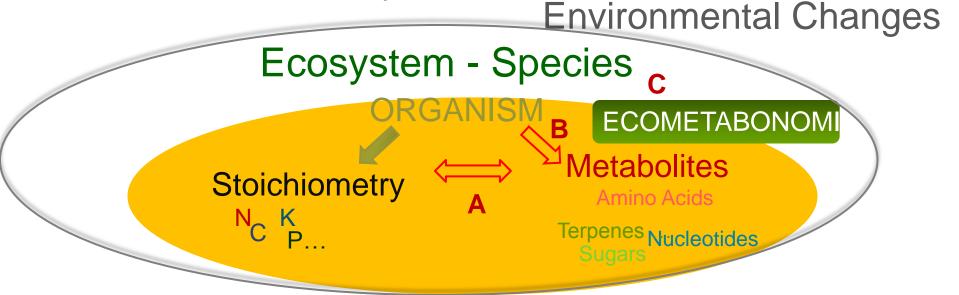
Ecosystem - Species

ORGANISM

Stoichiometry

Metabolits 10 Acid

Sugars

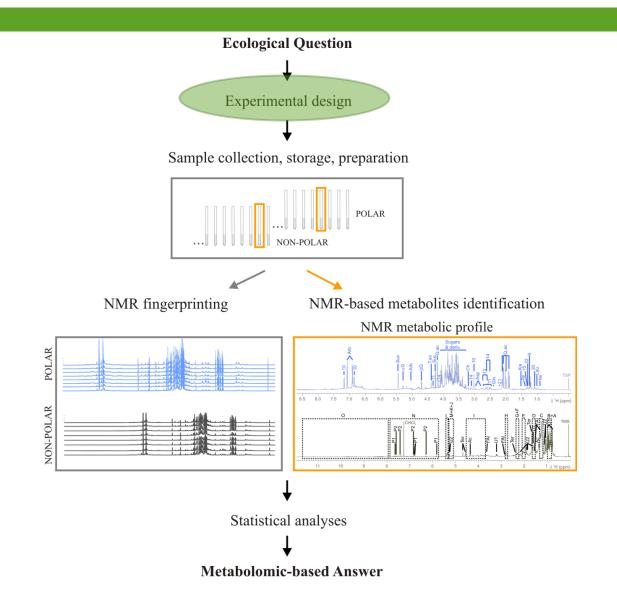

Terpens

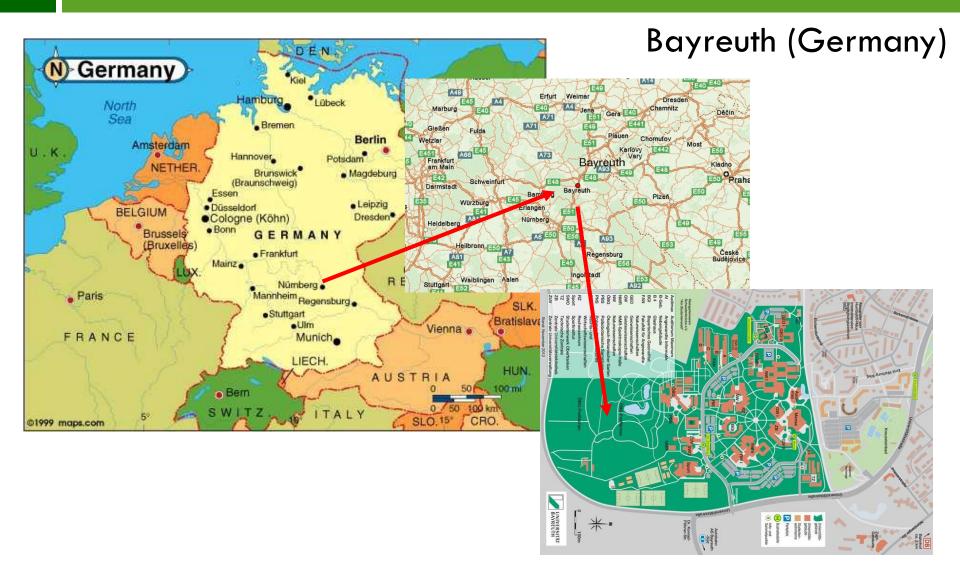
Nucleotids

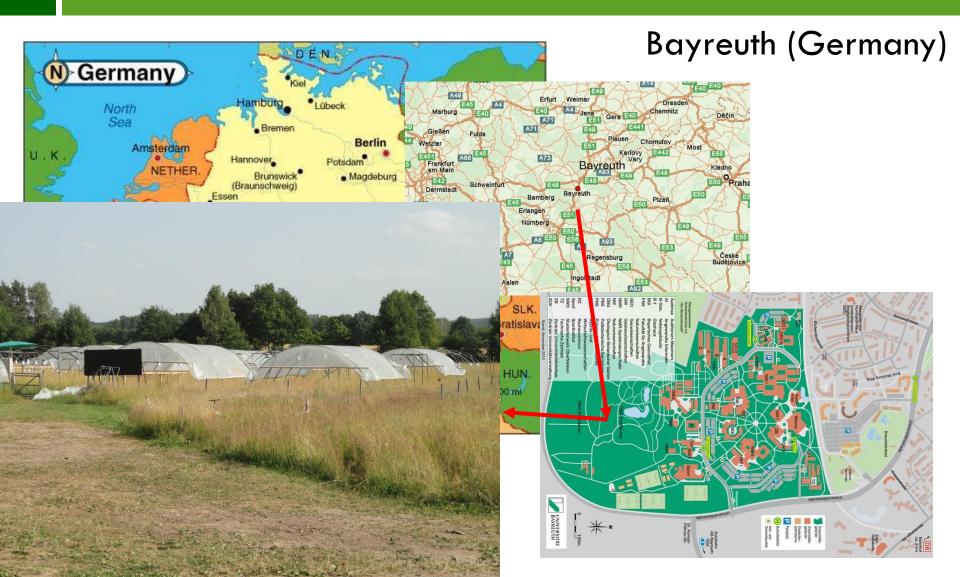
ECOMETABOLOMICS

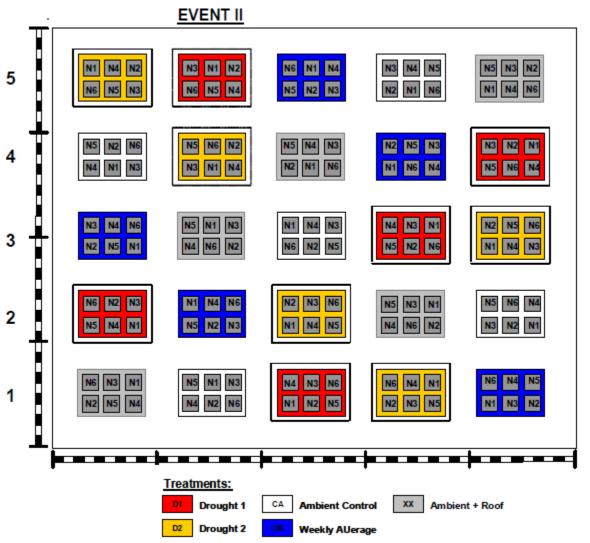
Objective

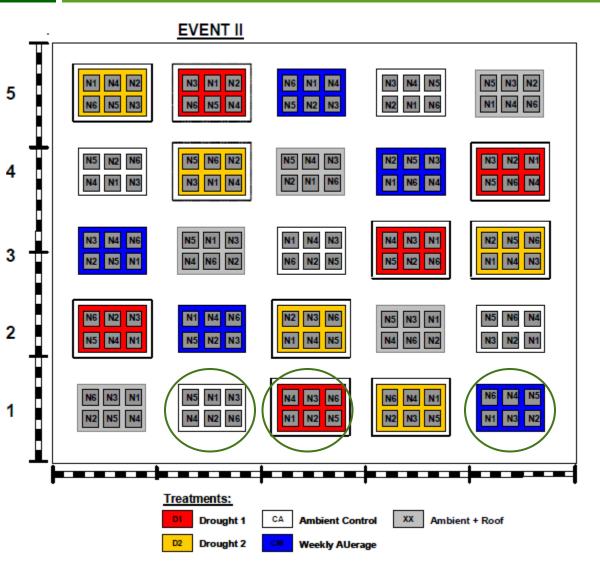
- A. Understand the Relationship between Metabolome and Stoichiometry
- B. Study the Effects of Environmental changes on the Metabolome of a Species
- C. Study the Structure & Function of the Ecosystem by Metabolomics and Stoichiometry.
- D. Increase the Knowledge of the Ecosystem structure and fucntion by Metabolomics and Stoichiometry




Ecological Question (first work)

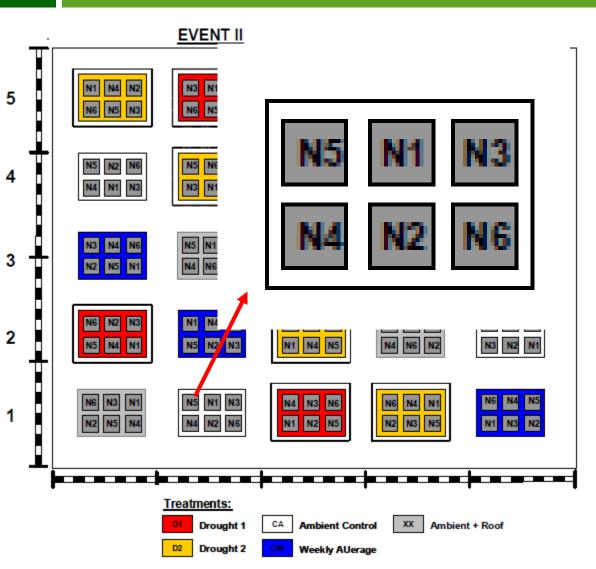

Which are the metabolism of plants affected by:


- Climate Change (Drought, warming, rainfall)
- Phisiology (Structure & function)
- Biodivesrtity or competition
- Ontogeny



• 2 species (Alopecurus pratensis and Holcus lanatus)

- Five replications of five precipitation treatments. Within each precipitation treatment six plots (1.5 m x 1.5 m size) receive different warming, winter rainfall and management manipulations (Figure 1).
- 2 time collect

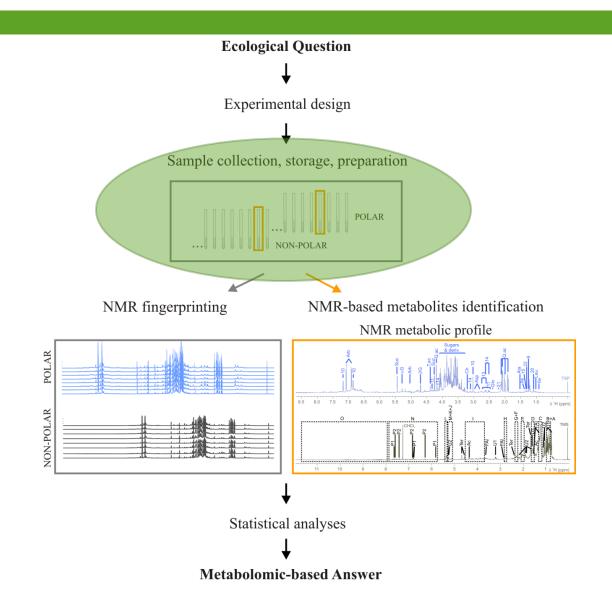


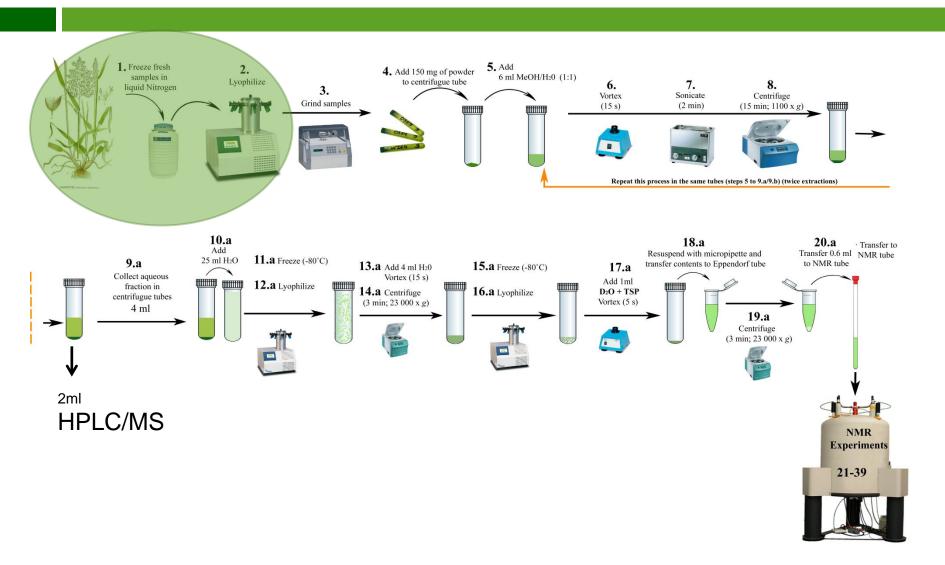
2 species (Alopecurus pratensis and Holcus lanatus)

Five replications of five precipitation treatments. Within each

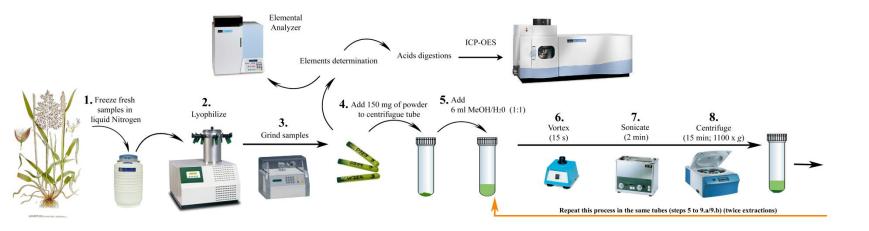
precipitation treatment six plots (1.5 m x 1.5 m size) receive different warming, winter rainfall and management manipulations (Figure 1).

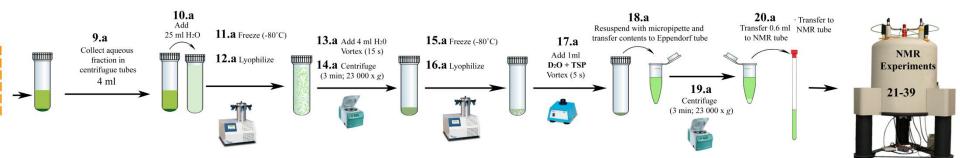
• 2 time collect (July and September.

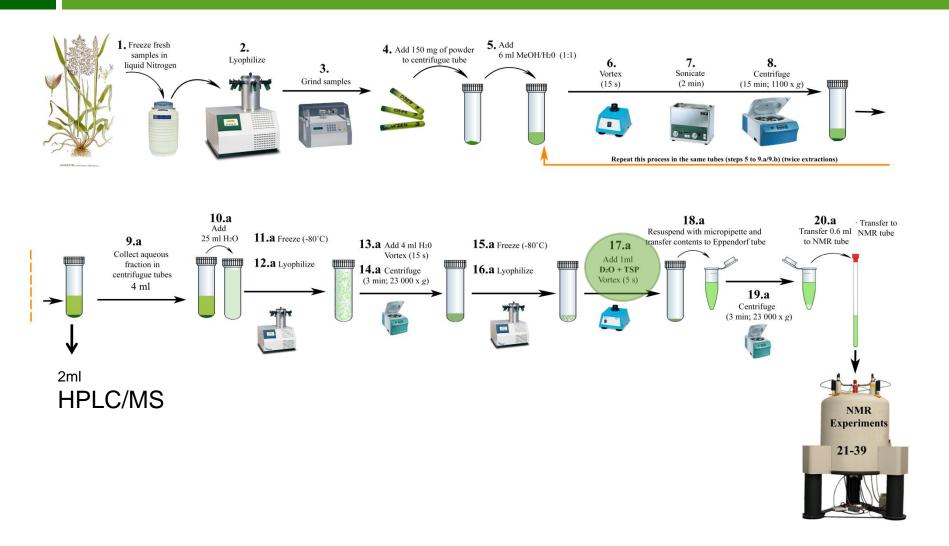


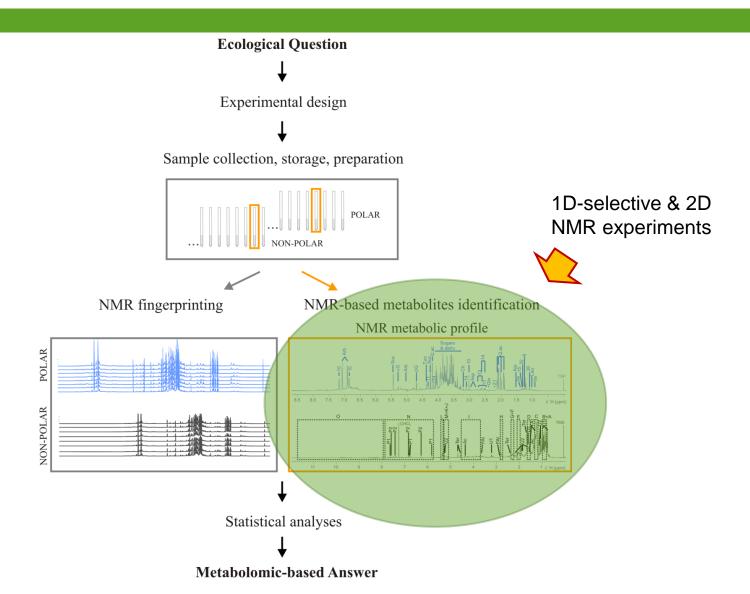

• 2 species (Alopecurus pratensis and Holcus lanatus)

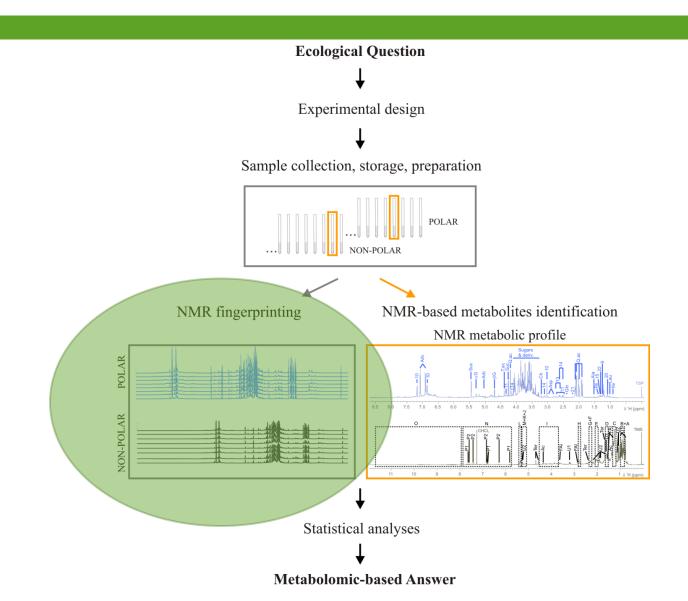
• Five replications of five precipitation treatments. Within each


precipitation treatment six plots (1.5 m x 1.5 m size) receive different warming, winter rainfall and management manipulations (Figure 1).

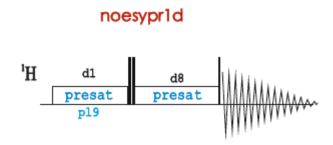

• 400 samples







NMR-based metabolic profile



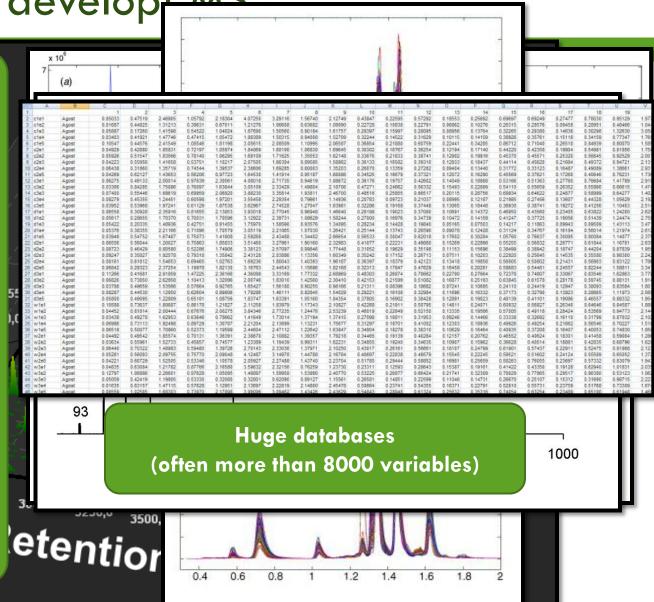
NMR-based metabolic profile

Fingerprinting (Adquisition)

- □ Automation
- All the samples doing with the same protocol and use the nmr-robot to doing the ¹H-spectrum.
- Reproducibility

NMR- Processing (Topspin & Amix software)

Post-Processing


integrals_192: Bloc de notas Archivo Edición Formato Ver Ayuda Number Integrated Region 1 9.221 9.046 2 8.956 8.723 3 8.487 8.421 4 8.120 8.038 5 7.890 6.225 6 6.128 5.921 7 5.766 5.684 9 5.486 5.431 10 5.435 5.400 11 5.400 5.372 12 5.373 5.314 13 5.247 5.250 14 5.249 5.220 15 5.221 5.173 16 5.171 5.118 17 5.052 5.023 18 5.023 4.960 20 4.664 4.26 21 4.249 4.151 23 4.141 4.080 24 4.080	Integral 0.10323 0.15622 0.03722 0.13101 15.37703 0.54323 0.20155 0.15041 0.66421 7.94417 0.96177 0.49839 0.39146 0.76354 1.38018 0.58775 0.24556 0.52547 0.52547 0.59628 0.75164 4.15057 38.29610 12.02106						(A/ Re	egrate MIX) spect t Indard (o the	inte	ernal
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12.02106 5.97311 42.94301 53.70915 12.62051 46.29956 64.96543 3.73860 68.43568 53.22546 15.7321 5.32279 1.88364 1.54200 6.56320 2.95495 0.70441 0.84750 0.63002 0.95495 0.70441 0.84750 0.63002 0.95495 0.37846 0.54277 2.09459 4.64855 1.35084 1.79870 0.63043 6.24710 3.30611 1.47591 5.90750 2.46144 3.10153 1.10707 0.89044 1.96147 1.79880 0.88925 0.58831 0.36339 0.36339 0.36339 0.36359 0.36861 1.13527	4.2 4.1	4.0 3.	.9 3.8	3.7	3.6	3.5		3.2	3.1	ppm

Introduction

MzMine

- Base Line Correction
 - Mass Detection
- Chromarogram Builder
 - Chromatogram
 Deconvolution
 - Alignment
 - Peak Finder

• Export

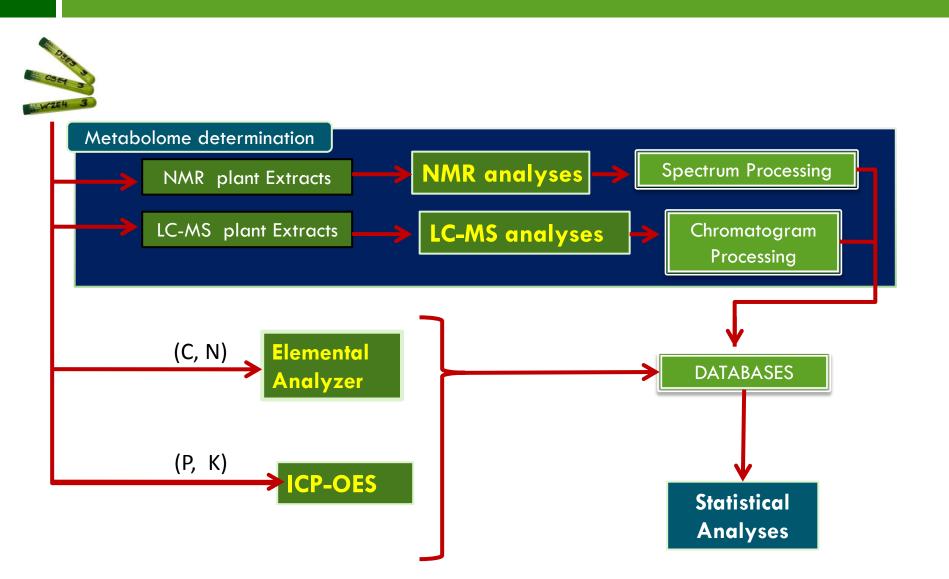
Methodology developt

ADVANTAGES

- \cdot High elucidation power
- · Rapid H¹NMR spectra obtention
- High Reproducibility (even between labs and spectrometers)
- \cdot No destruction of samples

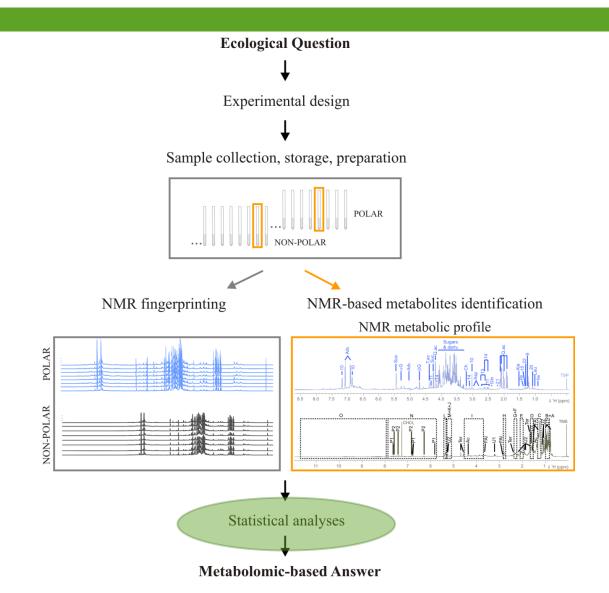
DISADVANTAGES

- · Slow elucidation process
- · Slow preparation of Extracts
- · High overlapping signal
- · Low sensitivity


- · High sensitivity
- · Rapid preparation of Extracts
- · Good compound separaton by chromatography
- · Rapid metabolite assignation

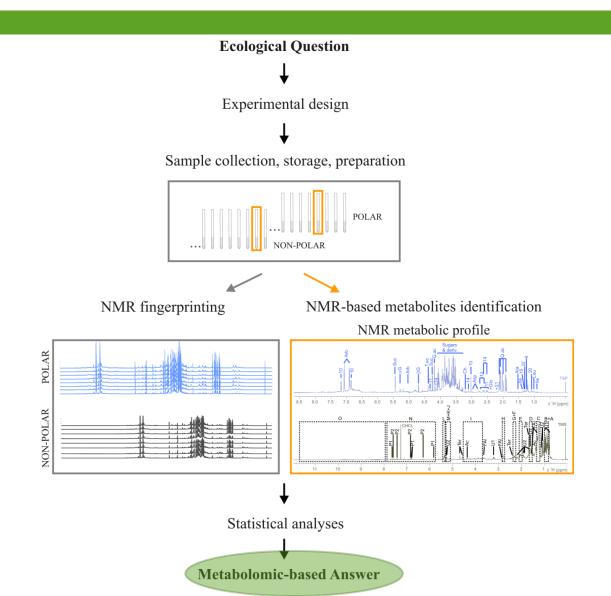
- \cdot Low elucidation power
- · Slow chromatographic separation
- · Sample destruction

NMR

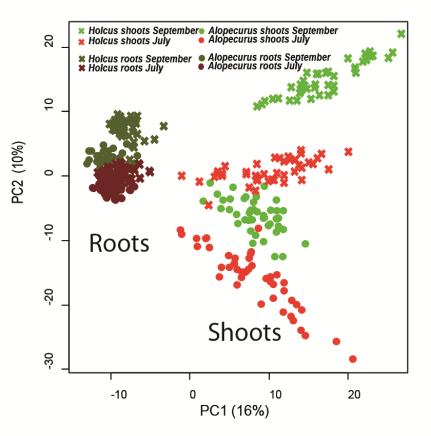


NMR-Ms-Stochiometry study

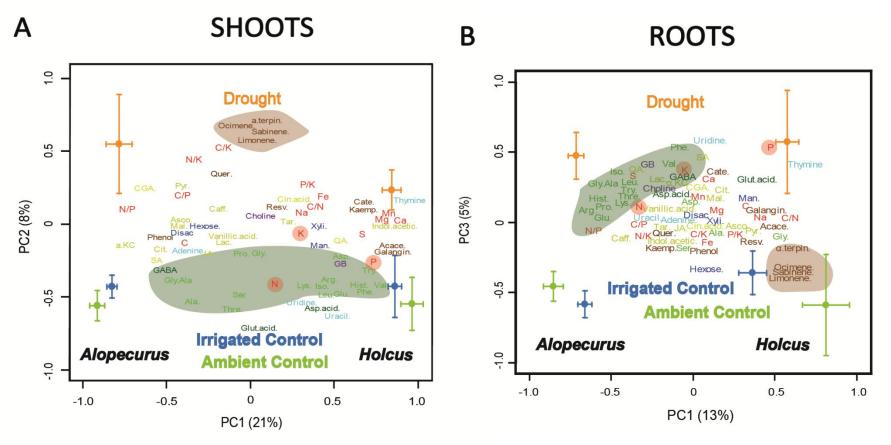
Ы	2	- C" -	-									Juliol.a	adju_RMN	- Micro	osoft E	xcel											_		_
hivo		Inicio	Inser	tar	Diseño d	le página	Fd	órmulas	Datos	Revisar	Vista	Cor	nplemento) S									1	_			~	?	
	Arial - 11 - A A =			=	= =	≡ ॐ™ 🚔 Ajustar texto				Número 👻					A					_	Σ Autosuma ·				Ĵ				
gar '			• <u>A</u> •	₽ ∃ ∉∉			🏣 Combinar y centrar 👻			· 🕎 - % 000		00 • 0			Darformato Estilos de • como tabla • celda •						0 _	Rellenar - Ordenar Busca Borrar - y filtrar - seleccio							
ара	p	Gi .		Fuente		5			Alineaciór			Gi -	Núme	ro	- Gi			tilos			(Celdas					lodifica		
	AC	263	-	. (=	fx	37.576	5																						
	A	В	С	D	E	F	G	Н		J	К	L	M	N	0	P	Q	B	S	Т	U	V	W	х	Y	Z	AA	AB	
Nam	ie -	Name	Season	Specie	Part of p	o Treatmen	Plot	Replicat	index de Simp			HH4 = 4/1	HO3 mq/l mearare d ar HO2	×N	×C	₽H (KCI)	soil mois	5cm air t	- 2 cm soi S	oil respira	Ca	ĸ	Mg	\$	Р	Fe	Ms	Na	
	89 90	JHD1N1L1 JHD1N1L2	July July	Holcus Holcus	stem stem	D1	N1	1	0.2316655	2.0253297	223.23	4.46 4.3	0.415	0.27	3.09	4.3	0.17143	15.4 15.4	15.3603	0.85	0.3360	1.7400	0.1033	0.1133	0.1395	0.3175	0.7291	0.1000	
	30 91	JHD1N1L3	July	Holcus	stem	D1	N1	3	12.9849433	0.6335632	223.23	4.57	0.908	0.25	3.15	3.97	0.17143	15.4	15.3603	0.10	0.3300	2.3736	0.1201	0.1200	0.1990	0.3308		0.1000	
	93	JHD1N1L5	July	Holcus	stem	D1	N1	5	0.6964145	2.5891077	223.23	3.67	0.524	0.19	2.33	3.86	0.17143	15.4	15.3603	0.38	0.3451	2.2326	0.1270	0.1117	0.1755	0.1070		0.1000	
	94 95	JHD1N5L1 JHD1N5L2	July Julu	Holcus Holcus	stem	D1	N5 N5	1	1.0495023	1.5228531	223.23 223.23	4.46	0.415	0.27 0.25	3.09	4.3	0.17143	15.4	15.3603 15.3603	0.85	0.4279	1.9586	0.1683	0.1756	0.1573	0.4117	0.7829	0.1000	
	36	JHD1N5L3	July	Holcus	stem	D1	N5	3	3.0705810	1.1192493	223.23	4.57	0.908	0.25	3.15	3.97	0.17143	15.4	15.3603	0.10	0.6060	2.1989	0.2138	0.1980		0.4944		0.1000	
	97	JHD1N5L4	July	Holcus	stem	D1	N5	4	7.8953333	0.9845561	223.23	4.83	0.907	0.33	3.95	3.87	0.17143	15.4	15.3603	0.54	0.6330		0.1938	0.2306		0.3312			
	98 99	JHD1N5L5 JHD1N6L1	July Julu	Holcus	stem	D1	N5 N6	5	2.5501636	2.5277393	223.23	3.67 d.d6	0.524	0.19	2.33	3.86	0.17143	15.4	15.3603	0.38	0.3802	1.8309	0.1004	0.1165	0.1508	0.3576		0.1000	
		JHD1N6L2		Holcus	stem	D1	N6	2	5.3907209	1.7724822	223.23	4.3	1.53	0.25	2.84	4.07	0.17143	16.7	15.4686	0.76	0.3903	1.1682	0.1299	0.1484	0.1134	0.2218	0.7785	0.6052	
	:01	JHD1N6L3	July	Holcus	stem	D1	N6	3	7.6656452	1.4420714	223.23	4.57	0.908	0.25	3.15	3.97	0.17143	16.7	15.4686	0.51		2.0636	0.2047	0.1840	0.1799	0.3260	1.1961	0.1000	
	02 03	JHD1N6L4 JHD1N6L5	July Julu	Holcus	stem	D1	N6 N6	4	4.6249786	0.4398614 2.0607881	223.23 223.23	4.83	0.907	0.33	3.95	3.87	0.17143	16.7	15.4686	0.54	0.4045	1.3828	0.1573	0.1596	0.0888	0.1079	0.6461	0.1000	
_	04	JHCMN1L1	July	Holcus	stem	CM	NI	1	6.0565727	1.1727473	350.85	3.2	0.21	0.25	2.80	4.38	0.24337	15.4	15.3603	0.8	0.5806	2.6329	0.2296	0.2426	0.2172	0.4128	0.3743	0.1000	
		JHCMN1L2	July	Holcus	stem	CM	N1	2	1.7244209	2.5563132	350.85	4.9	0.508	0.24	2.84	4.12	0.24337	15.4	15.3603	0.65	0.4551	2.8474	0.1581	0.2767	0.2934	0.1805	0.8137	0.1000	
_		JHCMNIL3 JHCMNIL4	July July	Holcus Holcus	stem	CM	N1	3	13.5610311 66.2237550	1.950043	350.85 350.85	4.5	1.21	0.26	2.99	3.97	0.24337	15.4	15.3603	0.84	0.4110	1.8331	0.1339	0.1955	0.1975	0.2903		0.3363	
	08	JHCMNIL5		Holcus	stem	CM	NI	5	0.7573178	2.5695669	350.85	3.14	0.869	0.24	2.27	3.89	0.24337	15.4	15.3603	0.67	0.4483	1.9362	0.1484	0.1804	0.2243	0.8822	******	0.1000	
	09	JHCMN5L1	July	Holcus	stem	CM	N5	1	38.7438905	0.8226729	350.85	3.2	0.21	0.25	2.80	4.38	0.24337	15.4	15.3603	0.8	0.6464	2.5921	0.2298	0.3392	0.2647	0.2057		0.1000	-
		JHCMN5L2 JHCMN5L3		Holcus Holcus	stem	CM	N5 N5	2	2.9163753	2.7228093	350.85	4.9	0.508	0.24	2.84	4.12	0.24337	15.4	15.3603 15.3603	0.65	0.4353	3.2463	0.1631	0.2445	0.2871	0.6696	0.5978	0.1000	
		JHCMN5L4		Holcus	stem	CM	N5	4	7.3482833	1.8133399	350.85	4.12	1.5	0.24	3.00	4.01	0.24337	15.4	15.3603	0.64	0.3681	2.2076	0.1254	0.2019	0.2271	0.1685			
		JHCMN5L5		Holcus	stem	CM	N5	5	13.2823476	1.0823213	350.85	3.14	0.869	0.17	2.27	3.89	0.24337	15.4	15.3603	0.67	0.5086		0.2638	0.3019	0.4153	1.3492		0.1935	-
		JHCMN6L1 JHCMN6L2	July July	Holcus	stem	CM	N6 N6	1 2	5.1984694	1.8255204	350.85 350.85	3.2	0.21	0.25	2.80	4.38	0.24337	16.7	15.4686	0.8	0.5753	2.1565	0.2005	0.2491	0.2168	0.3075		0.1000	-
		JHCMN6L3		Holcus	stem	CM	N6	3	72.9730583	1.5221887	350.85	4.5	1.21	0.24	2.99	3.97	0.24337	16.7	15.4686	0.84	0.3389	1.1859	0.1216	0.1134		0.1343	0.0104	0.1000	~
		JHCMN6L4	July	Holcus	stem	CM	N6	4	14.9875931	2.1191316	350.85	4.12	1.5	0.24	3.00	4.01	0.24337	16.7	15.4686	0.64	0.3641	1.9783	0.0817	0.1305		0.2767			-
	:18 :19	JHCMN6L5 JHCAN1L1	July July	Holcus	stem	CM	N6 N1	5	15.4667100	1.7771511 2.4008285	350.85	3.14	0.869	0.17	2.27	3.89	0.24337	16.7 15.4	15.4686	0.67	0.5649	2.4427	0.2491	0.2758	0.2312	0.4637	0.9469	0.1000	
_	20	JHCAN1L2	July	Holcus	stem	CA	NI	2	0.0707069	1.9863745	320.35	3.77	0.518	0.23	3.73	4.03	0.17345	15.4	15.3603	0.815	0.4874		0.1255	0.3345		0.2463		0.1000	-
	:21	JHCAN1L3	July	Holcus	stem	CA	N1	3	16.5230107	1.5846154	320.95	3.63	0.865	0.25	2.89	4.02	0.17345	15.4	15.3603	0.69	0.4951	1.9651	0.1957	0.1738				0.1000	-
	22 23	JHCAN1L4 JHCAN1L5	July July	Holcus	stem	CA	N1 N1	4	4.3679286	1.4315764	320.95 320.95	4.48	0.813	0.24	2.68	4.01	0.17345	15.4	15.3603 15.3603	0.54	0.3398	1.3165	0.1494	0.1550	0.1913	0.2801		2.2100	-
	23 24	JHCANSL1	July	Holcus Holcus	stem	CA	N5	1	1.8008725	2.0415203	320.35	4.01	0.391	0.20	2.72	4.03	0.17345	15.4 15.4	15.3603	0.85	0.3311	2.8720	0.1230	0.1423		0.3283		0.1000	
2	25	JHCAN5L2	July	Holcus	stem	CA	N5	2	3.6441452	2.7571646	320.95	3.77	0.518	0.33	3.73	4.28	0.17345	15.4	15.3603	0.815	0.6472		0.2004	0.1045	0.1851	0.3343	1.2914	0.1000	0
	26	JHCAN5L3 JHCAN5L4	July July	Holcus	stem stem	CA	N5 N5	3	1.9217839 664.1629643	2.2205738 0.5577801	320.95 320.95	3.63	0.865	0.25	2.89	4.02	0.17345 0.17345	15.4	15.3603 15.3603	0.69	0.4339	3.4213	0.1700	0.1633	0.3177	0.1652		0.1000	
	28	JHCANSL4	July	Holcus	stem	CA	NS NS	4	2.5979492	1.6232079	320.85	4.48	0.813	0.24	2.68	4.01	0.17345	15.4	15.3603	0.54	0.2515		0.1034	0.1438	0.2058	0.2061		0.1000	
	29	JHCAN6L1	July	Holcus	stem	CA	N6	1	3.5354044	1.5381189	320.95	3.36	0.362	0.23	2.69	4.03	0.17345	16.7	15.4686	0.85	0.4924		0.2017	0.3422		0.1897	0.8309	0.1000	
		JHCAN6L2 JHCAN6L3	July	Holcus	stem	CA	N6 N6	2	5.3900100	1.5783734	320.95 320.95	3.77	0.518	0.33	3.73	4.28	0.17345	16.7	15.4686	0.815	0.7276	2.0023	0.2965	0.2262	0.3386	0.5168	1.6081	0.1000	
		JHCAN6L3 JHCAN6L4	July July	Holcus Holcus	stem	CA	N6	4	30.8069976 2.3679667	0.8172922	320.85	3.63	0.865	0.25	2.89 2.68	4.02	0.17345	16.7	15.4686	0.63	0.3821	1.5077	0.1036	0.2080	0.2303	0.4613		0.294	
2	33	JHCAN6L5		Holcus	stem	CA	N6	5	4.4437857	1.4358596	320.95	4.01	0.391	0.20	2.72	3.83	0.17345	16.7	15.4686	0.71	0.5426	1.5348	0.1537	0.1434	0.2328	2.0454		0.1000	
_	34	JHD1N1R1 JHD1N1R2	July Julu	Holcus	Root Boot	D1	N1	1	0.2316655	2.0253297	223.23 223.23	4.46	0.415	0.27	3.09	4.3	0.17143	15.4	15.3603 15.3603	0.85	0.4172	0.8054	0.2414	0.1200	0.1161	8.5694	0.5998	0.1274	
	36	JHD1N1R2	July	Holcus	Root	DI	N1	3	12.9849433	0.6395692	223.23	4.3	0.908	0.25	2.84	4.07	0.17143	15.4	15.3603	0.76	0.3133	0.5431	0.14-31	0.0330	0.0882	4.6350		0.2163	
2	:37	JHD1N1R5	July	Holcus	Root	D1	N1	5	0.6964145	2.5891077	223.23	3.67	0.524	0.19	2.33	3.86	0.17143	15.4	15.3603	0.38	0.3935	0.6711	0.1868	0.1099	0.1316	6.0989		0.1270	
	38	JHD1N5R1	July	Holcus	Root	D1	N5	1	1.0495023	1.5228531	223.23	4.46	0.415	0.27	3.09	4.3	0.17143	15.4	15.3603	0.85	0.2342	0.5812	0.1811	0.0902	0.0936	7.4031	0.3886	0.1355	
	39 40	JHD1N5R2 JHD1N5R3	July July	Holcus	Root Root	D1	N5 N5	2	4.6541889	1.9216372	223.23 223.23	4.3	1.53	0.25	2.84	4.07	0.17143	15.4	15.3603 15.3603	0.76	0.3657	0.6270	0.1911 0.1695	0.0930	0.1005	7.7533	0.5531	0.1592	
																													- 1 ^o


Statistical analysis

Statistical analysis


- 1. PCA (multivariant ordenation)
 - 1. To help visualize the existence of groups in a or sample set variables.
 - 2. Reduce the number of variables without loss of information, thus allowing the application regression methods (ratio sample / regressors).
- 2. Anova and lineal regression (univariant)

Metabolomic-based Answer


Metabolomic-based Answer

A

- Differences between the two species and between the two seasons of sampling
- Differences between shoots and roots at both the metabolic and elemental concentration levels
- PC2 scores show that the variability of the metabolome was lower in the root samples than in the shoot samples

Metabolomic-based Answer

Shoots and roots of both plant species responded to drought in opposite ways

- Shoots and roots have different metabolomes and nutrient concentrations.
- Shoot metabolome is much more variable than the root
- Roots and shoots respond to drought with opposite metabolic changes

ECOMETABOLOMICS

Thank you for your attention!

Albert Gargallo Garriga

Facultat de Ciències. Departament de Química